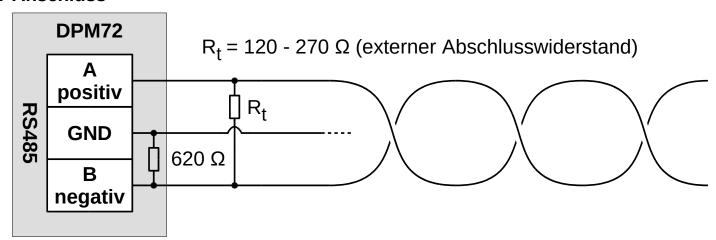


Digalox® DPM72-RS485/Modbus-Schnittstelle Bedienungsanleitung (Rev-2023-05)


1. Beschreibung

Die Digalox® DPM72-Geräte mit Modbus-Schnittstelle können über das Modbus-RTU-Protokoll als "Master" oder "Slave" mit anderen DPM72-Geräten oder Geräten anderer Hersteller kommunizieren. Werte des Gerätes sind als Anzeigewerte verfügbar, Werte aus anderen Geräten können als Fernwerte in die Anzeige eingebunden werden. Im "Master"-Modus können darüber hinaus mithilfe eines Zwischenspeichers auch Werte zwischen zwei "Slaves" ausgetauscht werden.

2. Spezifikation

- 8 Datenbits, 1 Stoppbit
- Baudrate: Einstellbar bis 500.000 Baud
- Parität: Keine, gerade, ungerade, space, mark
- ¼ "unit load", bis zu 128 Teilnehmer
- Externer Abschlusswiderstand benötigt

3. Anschluss

4. Konfiguration – allgemein

Zur Konfiguration eines Gerätes dieses vom Modbus-Netzwerk trennen, den Anschluss J8 kurzschließen und über einen RS485-USB-Adapter mit einem PC verbinden. Auf der Anzeige (falls vorhanden) erscheint "RS485 config", das Gerät kann nun mithilfe der Software "Digalox® Manager" konfiguriert werden. Nach Abschluss der Konfiguration J8 wieder öffnen. Bei Geräten mit Anzeige müssen alle Werte, die übertragen werden sollen, auch in der Anzeige konfiguriert sein. Geräte ohne Anzeige stellen die ersten vier konfigurierten Anzeigewerte bereit. Durch Setzen der Jumper J4-J6 werden entsprechend andere Anzeigewerte bereitgestellt.

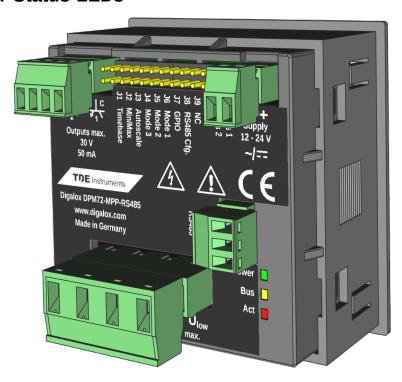
5. Konfiguration - "Master"

Im "Master"-Betriebsmodus können bis zu 64 Aktionen definiert werden, die der "Master" periodisch ausführt. Sie erlauben den lesenden oder schreibenden Zugriff auf die Modbus-Register der "Slaves". Über den Parameter "Master-Wartezeit" kann eine Verzögerung zwischen den Nachrichten eingestellt werden, um Kompatibilität mit langsameren "Slaves" zu gewährleisten.

6. Byte-Reihenfolge

Standardmäßig übertragen die Geräte die Werte in der Byte-Reihenfolge 21436587. Für den "Slave"-Betriebsmodus kann eine andere Byte-Reihenfolge gewählt werden. Der "Master"-Betriebsmodus erlaubt die Einstellung der Byte-Reihenfolge pro Aktion.

7. Modbus-Register


"Input registers" lesen – Funktionscode: 04

Adresse (hexadezimal)	Adresse (dezimal)	Datentyp	Beschreibung
0x00	0	Float32, IEEE-754	Anzeigewert 1
0x02	2	Float32, IEEE-754	Anzeigewert 2
0x04	4	Float32, IEEE-754	Anzeigewert 3
0x06	6	Float32, IEEE-754	Anzeigewert 4
0x08	8	Int64	Anzeigewert 1
0x0C	12	Int64	Anzeigewert 2
0x10	16	Int64	Anzeigewert 3
0x14	20	Int64	Anzeigewert 4

"Holding registers" lesen / schreiben – Funktionscode: 03 / 16

Adresse (hexadezimal)	Adresse (dezimal)	Datentyp	Beschreibung
0x00	0	Float32, IEEE-754	Fernwert 1
0x02	2	Float32, IEEE-754	Fernwert 2
0x04	4	Float32, IEEE-754	Fernwert 3
0x06	6	Float32, IEEE-754	Fernwert 4
0x08	8	Int64	Fernwert 1
0x0C	12	Int64	Fernwert 2
0x10	16	Int64	Fernwert 3
0x14	20	Int64	Fernwert 4

8. Status-LEDs

Auf der Geräte-Rückseite befinden sich drei LEDs, die den Geräteund Bus-Zustand signalisieren:

- Power (grün)
- Bus (orange)
- Act (rot)

Zustand	Bedeutung
Power (grün) leuchtet	Gerät an
Bus (orange) blinkt oder leuchtet	Bus aktiv
Act (rot) blinkt schnell oder leuchtet	Gerät sendet
Bus (orange) und Act (rot) blinken mit 2 Sekunden Pause [nur Master]	Slave antwortet nicht

9. Kommunikations-Status-Anzeige

Auf der Anzeige wird über den Zustand der Modbus-Kommunikation informiert.

Anzeige	Zustand	Bedeutung
-) = (-	Symbol blinkt	Verbindungsprobleme
₩ <u></u>	M (Master) blinkt	Gerät kommuniziert im Master-Modus
器 \$(-	S (Slave) blinkt	Gerät kommuniziert im Slave-Modus

10. Meldungen auf der Anzeige (Master)

Anzeige	Bedeutung	Lösung
MB timeout Sx	Slave x antwortet nicht	Slave-Konfiguration prüfen, Master-Wartezeit vergrößern
MB Sx	Falscher Slave x antwortet	Slave-Konfiguration prüfen
MB exc. Sx: y	Slave x antwortet mit Modbus- Exception y	Fehlernummer im Slave- Handbuch oder Modbus- Standard nachlesen
MB w/fc. Sx	Slave x antwortet mit falschem Funktionscode	Slave-Konfiguration prüfen
MB size Sx	Antwort von Slave x hat falsche Größe	Slave-Konfiguration prüfen
MB res. Sx	Bestätigung von Slave x zum Funktionscode 16 ("Holding registers" schreiben) ist fehlerhaft	Slave-Konfiguration prüfen
MB func. Sx	Slave x antwortet mit nicht unterstütztem Funktionscode	Slave-Konfiguration prüfen

11. Meldungen auf der Anzeige (Slave) / Modbus-Exceptions:

Anzeige	Bedeutung	Lösung
MB illegal fc. y	Nicht unterstützter Funktionscode y vom Master empfangen; Modbus- Exception 1 geantwortet.	Master-Konfiguration prüfen
MB illegal data addr.	Ungültiger Registerzugriff vom Master angefordert; Modbus- Exception 2 geantwortet	Master-Konfiguration prüfen

12. Kontaktdaten

TDE Instruments GmbH, Gewerbestraße 8, D-71144 Steinenbronn

Telefon: +49 7157 20801

E-Mail: info@tde-instruments.de

Internet: www.tde-instruments.de, www.digalox.de